

Energy Efficiency Potential:

Analysis Update

John Anderson & Kitty Wang Rocky Mountain Institute April 20, 2007

Scope of Project

- *Basis:* AB2021 requires POUs to estimate achievable, cost-effective efficiency potential over 10-year period
- *Goal:* Develop methodology for POUs to use, along with initial efficiency estimates
- POUs will work with governing boards to finalize efficiency estimates and provide results to CEC
- This project:
 - *Included utilities:* 35 POUs (9% of CA's electricity consumption)
 - RMI is working with SVP separately
 - Excluded utilities: SMUD, LADWP, CPAU, Redding, and IOUs

California State Electricity Sales, 2005/2006 (GWh)

Detail on Study Group

9 largest POUs in study	All other POUs in study						
Imperial	Alameda	Healdsburg					
Anaheim	Azusa	Hercules					
Modesto	Biggs	Industry					
Riverside	Banning	Island					
Turlock	Colton	Lassen					
Roseville	City of Corona	Lodi					
Pasadena	Lompoc	Merced					
Burbank	Needles	Moreno					
Glendale	Rancho Cucamonga	Plumas-Sierra					
	Shasta Lake	Port of Oakland					
	Ukiah	Trinity					
	Corona	Truckee Donner					
	Gridley	Vernon					

Approach to Efficiency Modeling

Goal:

- Methodology to estimate cost-effective, achievable energy efficiency potential for 2007-2016 time frame, per AB2021
- Provide "first round" targets for Governing Boards to consider

• Basis:

- California Energy Efficiency Potential Study in 2006 (Itron)
 - Designed based on customer, system, and cost data from PG&E, SCE, and SDG&E

Customize for each NCPA/SCPPA utility based on:

- Climate zone
- Building types
- End uses
- Rates/Avoided Costs

Customization Data Requested

- Degree of customization for each POU depends on data provided
- RMI requested:

General	2006 consumption by sector (MWh)	Energy efficiency program cost		
Climate Zone	Forecast system consumption (MWh, MW)	Retail electric rates (\$/kWh) by sector		
Discount rate	Building type breakdowns by sector	Avoided costs (\$/MWh, \$/kW-month) by TOU period		
	End use breakdowns by sector	Program admin cost (\$/kWh)		

• Where POU data was unavailable, use Itron data from most appropriate IOU or CZ.

Efficiency Framework

Technical Potential

Customization for individual POUs

- Itron's IOU efficiency estimates are not directly applicable to POUs
- Estimates for IOUs customized for each POU based on:
 - climate
 - customer building type mix
 - electricity end uses
 - Load growth
- According to the following method:

- Then forecast results over the 2007-2016 time frame, based on POU's consumption and peak demand forecasts.
 - -Modify based on information about new construction vs. increased intensity

Cost-Effective Potential

Customization for POUs

- Subset of technical potential
- Assumed to be all efficiency that passes the Total Resource Cost test
- Other cost tests (RIM, PCT, PAC) will also be calculated, using established E3 cost-effectiveness methodology
- Cost test calculations to be based on POU's retail electric rates, and avoided costs calculated by E3 for most appropriate IOU (unless POU-specific avoided costs are available)

Achievable Potential

How to define achievable targets

- Key point: all adjustments are inherently qualitative & subjective
- Several strategies were initially considered
 - % of cost-effective potential
 - Max % of total load per year savings
 - Historical savings (as incremental % per year)
- Problem: insufficient data to make reasonable estimates, too coarse, not ambitious enough
- Final strategy: combination of these
 - 1. Baseline: historical savings, based on 1037 reported savings
 - 2. Utility estimates achievable annual penetration, by cost-effective measure, accounting for :
 - Load forecast (EE easier to achieve in new construction)
 - Customer mix (large commercial EE easiest to achieve)
 - Economies of scale (larger utilities can achieve more)
 - % of revenues spent on EE (more \$ = more savings)
 - 3. Ability to ramp up this potential based on budget increases

Output template for each POU

			2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Technical Energy Efficiency Potential	(FLAMAN)) AGG BRUTH	System Total Residential Commercial Industrial										
	(WW)	System Total Residential Commercial Industrial										
Cost- Effective Energy Efficiency Potential	(mmm)	System Total Residential Commercial Industrial										
	Demand (itww)	System Total Residential Commercial Industrial										
Achievable Energy Efficiency Potential	Energy (MWh)	System Total										
	Demand (MW)	System Total										

Sample outputs graphs

- To assist POUs with implementation, the following information will be included
- Accuracy depends on POU-specific data provided

Cost-Effective Potential (by sector)

Cost-Effective Potential (Commercial Sector)

